Angiomotin family proteins are novel activators of the LATS2 kinase tumor suppressor

نویسندگان

  • Murugan Paramasivam
  • Ali Sarkeshik
  • John R. Yates
  • Maria J. G. Fernandes
  • Dannel McCollum
چکیده

LATS2 kinase functions as part of the Hippo pathway to promote contact inhibition of growth and tumor suppression by phosphorylating and inhibiting the transcriptional coactivator YAP. LATS2 is activated by the MST2 kinase. How LATS2 is activated by MST2 in response to changes in cell density is unknown. Here we identify the angiomotin-family tight junction protein AMOTL2 as a novel activator of LATS2. Like AMOTL2, the other angiomotin-family proteins AMOT and AMOTL1 also activate LATS2 through a novel conserved domain that binds and activates LATS2. AMOTL2 binds MST2, LATS2, and YAP, suggesting that AMOTL2 might serve as a scaffold protein. We show that LATS2, AMOTL2, and YAP all localize to tight junctions, raising the possibility that clustering of Hippo pathway components at tight junctions might function to trigger LATS2 activation and growth inhibition in response to increased cell density.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Lats2 phosphorylates p21/CDKN1A after UV irradiation and regulates apoptosis.

LATS2 (Large tumor suppressor 2), a member of the conserved AGC Ser/Thr (S/T) kinase family, is a human tumor suppressor gene. Here, we show that in response to ultraviolet radiation, Lats2 is phosphorylated by Chk1 at Ser835 (S835), which is located in the kinase domain of Lats2. This phosphorylation enhances Lats2 kinase activity. Subsequently, Lats2 phosphorylates p21 at S146. p21 (CDKN1A) i...

متن کامل

Role of Angiomotin-like 2 mono-ubiquitination on YAP inhibition.

LATS1/2 (large tumor suppressor) kinases and the Angiomotin family proteins are potent inhibitors of the YAP (yes-associated protein) oncoprotein, but the underlying molecular mechanism is not fully understood. Here, we report for the first time that USP9X is a deubiquitinase of Angiomotin-like 2 (AMOTL2) and that AMOTL2 mono-ubiquitination is required for YAP inhibition. USP9X knockdown increa...

متن کامل

Molecular and Cellular Pathobiology Identification of a Tumor Suppressor Relay between the FOXP3 and the Hippo Pathways in Breast and Prostate Cancers

Defective expression of LATS2, a negative regulator of YAP oncoprotein, has been reported in cancer of prostate, breast, liver, brain, and blood origins. However, no transcriptional regulators for the LATS2 gene have been identified. Here we report that spontaneous mutation of the transcription factor FOXP3 reduces expression of the LATS2 gene in mammary epithelial cells. shRNA-mediated silenci...

متن کامل

Lats2 is an essential mitotic regulator required for the coordination of cell division.

Tumor suppressor Lats2 is a member of the conserved Dbf2 kinase family. It localizes to the centrosome and has been implicated in regulation of the cell cycle and apoptosis. However, the in vivo function of this kinase remains unclear. Here, we show that complete disruption of the gene encoding Lats2 in mice causes developmental defects in the nervous system and embryonic lethality. Furthermore...

متن کامل

Heat shock protein 90 inhibition depletes LATS1 and LATS2, two regulators of the mammalian hippo tumor suppressor pathway.

Heat shock protein 90 (HSP90), which regulates the functions of multiple oncogenic signaling pathways, has emerged as a novel anticancer therapeutic target, and multiple small-molecule HSP90 inhibitors are now in clinical trials. Although the effects of HSP90 inhibitors on oncogenic signaling pathways have been extensively studied, the effects of these agents on tumor suppressor signaling pathw...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 22  شماره 

صفحات  -

تاریخ انتشار 2011